Rings and Subrings
링(ring)에 대해 적당히 대응하는 단어를 찾을 수가 없어서, 링은 그대로 외래어 표기를 사용합니다. 날개의 도서관에서 사용하는 수학 용어에 대한 기본 정책은, http://celdee.tistory.com/610에서 찾아볼 수 있습니다. 링은, 명시적으로 연산을 정의하지 않았다면, 거의 언제나 덧셈과 곱셈 두 연산에 대한 집합을 대상으로 한다. 만약 필요하다면, 링이 어떤 두 연산을 정의하고 있는지 명시적으로 밝힐 수도 있다. 일반적으로, 군(group)은 덧셈이라는 하나의 정의만 다루고 있고, 곱셈에 관한 연산을 쓰지 않았다. 즉, 두 개 이상의 어떤 복합적인 연산에 대해서 대수 구조를 확장하지 않은 것인데, 링은 바로 그런 경우까지 다룬다. 따라서, 링은 군보다 조금 더 큰 개념이라 할 수 있는데..
더보기
Subgroup (Semigroup, 부분군, 반군)
예를 들어, 짝수의 집합은 전체 정수의 부분 집합이라고 할 수 있다. 그리고, 홀수, 짝수의 집합은 각각 덧셈에 관해 군(group)을 이룬다. 그러므로, 다음의 정의를 만족한다면, 짝수는 정수군의 부분군(subgroup, semigroup, 반군)을 이룬다. def. H가 집합 G에서 어떤 연산에 대해 군을 이룬다면, 부분 집합 H는 어떤 군 G의 부분군이다. 즉, G가 어떤 연산 *에 대한 군이라면, H는 G의 부분군이고, a, b ∈ G일 때 a, b ∈ H이다. 이것은, H는 연산 *에 대해 닫혀 있어야 한다는 것을 뜻하고, 부분적으로 a ∈ H일 때 a * a ∈ H이다. 더 간단히 말하자면, 부분군은 군의 정의 중, 첫번째 정의인 'G의 모든 원소 a, b에 대해 (a * b) * c = a ..
더보기