미분법 썸네일형 리스트형 The Origin of Differentiation 미분법은 곡선에 접선을 그리는 문제와 함수의 극대, 극소값을 구하는 데에서 유래되었다고 전해지기도 한다. 비록 그 같은 고찰이 고대 그리스까지 거슬러올라간다 하더라도 미분법을 최초로 명확하게 예상한 것은 1629년 페르마가 설명한 착상으로부터였다고 함이 타당할 것이다. 케플러는 함수의 증분은 보통 극대 또는 극소값 근방에서는 무한소가 된다는 것을 알게 되었다. 페르마가 이 사실을 극대값, 극소값을 결정하는 방법으로 변형시켰다. 간략하게 이 방법을 고찰해보자. f(x)가 x에서 보통의 극대값 또는 극소값을 갖고 e가 매우 작다면 f(x - e)의 값은 거의 f(x) 의 값과 같다. 그러므로 시험적으로 f(x - e) = f(x)라 놓고 나서 e가 0 값을 갖게 함으로써 이 등식을 참이 되게 만든다. 그 결.. 더보기 이전 1 다음